×

Enter your email for instant access to Innovate AI/ML on-demand

Opt-in to Future Emails
Yes, I'd like Amazon Web Services (AWS) to share the latest news about AWS services and related offerings with me by email, post or telephone.

You may unsubscribe from receiving AWS news and offers at any time by following the instructions in the communications received. AWS handles your information as described in the AWS Privacy Notice.
Thank you!
Error - something went wrong!

Build custom deep learning environments with AWS Deep Learning Containers

Deep learning (DL) projects often require integrating custom libraries with popular open-source frameworks such as TensorFlow, PyTorch, and Hugging Face. Setting up, managing, and scaling custom ML environments can be time consuming and cumbersome, even for experts. With AWS Deep Learning Containers, you get access to prepackaged and optimized DL frameworks that make it easy for you to customize, extend, and scale your environments. In this session, learn how to use Deep Learning Containers to build your custom ML environment and how to implement model training and inference with Deep Learning Containers in Amazon SageMaker.

Previous Video
Choosing the right ML instances for your training and inference deployments
Choosing the right ML instances for your training and inference deployments

In this session, explore how to choose the proper instance for ML training and inference based on model siz...

Next Video
ML at the edge with Amazon SageMaker
ML at the edge with Amazon SageMaker

In this chalk talk, dive into building computer vision (CV) applications at the edge for predictive mainten...

×

Questions about
AWS AI/ML Solutions?

Contact support

First Name
Last Name
Phone Number
Company Name
Country/Region
Nature of Inquiry
Opt-in to Future Emails
Yes, I'd like Amazon Web Services (AWS) to share the latest news about AWS services and related offerings with me by email, post or telephone.

You may unsubscribe from receiving AWS news and offers at any time by following the instructions in the communications received. AWS handles your information as described in the AWS Privacy Notice.
Thank you!
Error - something went wrong!